Lompat ke konten Lompat ke sidebar Lompat ke footer

Sudut Saling Berpenyiku Dan Berpelurus

Jika dari dua buah garis sejajar dipotong oleh sebuah garis, maka kita akan mendapatkan sudut-sudut yang memiliki hubungan seperti sehadap, berseberangan, dan sepihak. Namun, apabila dua sudut membentuk sudut siku-siku ataupun sudut lurus maka kita akan mendapatkan hubungan dua sudut yang dikenal sebagai saling berpenyiku dan saling berpelurus. Dalam artikel kali ini kita akan mengulas mengenai hubungan dua sudut sudut tersebut yaitu saling berpenyiku dan berpelurus.

Sudut Saling Berpenyiku (Berkomplemen)

Sesuai dengan judul berpenyiku dengan kata dasar siku atau siku-siku maka besar sudutnya adalah 90o . Apabila dua sudut yang letak dan posisinya saling bersebelahan membentuk sudut siku-siku atau jumlah besar sudutnya 90o  maka sudut-sudut tersebut dapat dikatakan saling berpenyiku atau disebut juga berkomplemen. Sudut yang satu disebut penyiku dari sudut yang lain.

melalui atau bersama ini demikian misalkan sudut ADB dan sudut BDC saling berpenyiku, maka sudut ADB + sudut BDC = 90o  dan sudut BDC ialah penyiku dari sudut ABC. Perhatikan gambar di bawah:

misal 1
Jika sudut A = $35^o$ , tentukan penyiku dari sudut A!
Penyelesaian
Misalkan B adalah penyiku dari sudut A, maka
sudut B = $90^o – 35^o = 55^o$
Jadi, besar penyiku dari sudut A adalah $55^o$

misal 2
Perhatikan gambar di bawah ini!
Tentukan nilai x!
Penyelesaian
$x^o + (x + 22)^o + 2x^o = 90$
$4x^o + 22^o = 90^o$
$4x^o = 90^o$
$x = \frac{90^o}{4^o}$
$x = 17$

Sudut Saling Berpelurus (Bersuplemen)

Berpelurus diambil dari kata dasar lurus, sudut yang dibentuk oleh sebuah garis lurus adalah 180o . Dua sudut yang disebut saling berpelurus apabila jumlah besar kedua sudut tersebut adalah 180o . Sudut yang satu disebut pelurus dari sudut yang lain. 

melalui atau bersama ini demikiian misalkan sudut ABD dan sudut CBD saling berpelurus, maka sudut ABD + sudut CBD = 180o . Sudut CBD disebut pelurus dari sudut CBD. Untuk lebih jelasnya, perhatikan gambar di bawah.

misal 3
Jika diketahui sudut ABC = $112^o$ , maka besar pelurus dari sudut ABC adalah …
Penyelesaian
Pelurus dari ABC = $180^o – 112^o = 78^o$
Jadi, besar pelurus dari sudut ABC adalah $78^o$

misal 4
Diketahui sudut A = $(4x – 13)^o$  dan sudut B = $(x + 3)^o$ , jika sudut A dan sudut B saling berpelurus. Tentukan besar sudut A dan sudut B!
Penyelesaian
Sudut A + Sudut B = $180^o$
$(4x – 13)^o + (x + 3)^o = 180^o$
$5x^o – 10^o = 180^o$
$5x^o = 190^o$
$x = 38$
Sudut A = $(4 \times 38^o – 13)^o = (152 – 13)^o = 139^o$
Sudut B = $(38 + 3)^o = 41^o$
Jadi, besar sudut A dan sudut B berturut-turut adalah $139^o$ dan $41^o$

Demikianlah mengenai sudut saling berpenyiku dan berpelurus semoga dapat dipahami dan bermanfaat.

Posting Komentar untuk "Sudut Saling Berpenyiku Dan Berpelurus"