Menentukan Nilai Suku Banyak/Polinomial Dengan Metode Substitusi Dan Skema
Dalam menentukan nilai dari suatu suku banyak atau yang dikenal pula dengan sebutan polinomial, kita dapat menggunakan dua cara yaitu dengan metode substitusi dan dengan cara skema. melalui atau bersama ini menyatakan suatu suku banyak dalam suatu fungsi, nilai suatu suku banyak dapat ditentukan dengan mudah. melalui atau bersama ini demikian bentuk umum dari suku banyak dapat dituliskan menjadi
Agar lebih memahami perihal cara substitusi ini, perhatikanlah contoh soal berikut ini.
misal 1
Tentukan nilai suku banyak berikut ini untuk nilai x yang diberikan.
f(x) = 2x3 + 4x2 – 18 untuk x = 5
Penyelesaian
f(x) = 2x3 + 4x2 – 18
f(3) = 2 (5)3 + 4 (5)2 - 18
f(3) = 2 (125) + 4 (25) - 18
f(3) = 250 + 100 - 18
f(3) = 332
Jadi, nilai suku banyak f(x) untuk x = 5 adalah 332
misal 2
Tentukan nilai suku banyak berikut ini untuk nilai x yang diberikan.
f(x) = x4 + 3x3 – x2 + 7x + 25 untuk x = –2
Penyelesaian
f(x) = x4 + 3x3 – x2 + 7x + 25
f(-2) = (-2)4 + 3(-2)3 – (-2)2 + 7(-2) + 25
f(-2) = 16 + 3(-8) – 4 - 14 + 25
f(-2) = 16 - 24 - 4 - 14 + 25
f(-2) = -1
Jadi, nilai suku banyak f(x) untuk x = -2 adalah -1
Dimana, ak3 + bk2 + ck + d ialah nilai dari suku banyak yang dicari. Teknik ini, berlaku juga untuk suku banyak berderajat lainnya. Untuk lebih memahami perihal cara ini, perhatikan dan pahami contoh soal beserta pembahasanya berikut ini.
misal 3
Hitunglah nilai suku banyak untuk nilai x yang diberikan berikut ini.
f(x) = x3 + 2x2 + 3x – 4 untuk x = 5
Penyelesaian
melalui atau bersama ini cara Skema
Jadi, nilai suku banyak f(x) untuk x = 5 adalah 186
misal 4
Hitunglah nilai suku banyak untuk nilai x yang diberikan berikut ini.
f(x) = 2x3 – 3x2 + 9x + 12 untuk x = 1/2
Penyelesaian
melalui atau bersama ini cara Skema
Jadi, nilai suku banyak f(x) untuk x = 1/2 adalah 16
Demikianlah mengenai menentukan nilai suku banyak/polinomial dengan metode substitusi dan skema semoga bermanfaat.
f(x) = anxn + an – 1xn – 1 + an – 2xn – 2 + … + a1x + a0
melalui atau bersama ini syarat: n ∈ bilangan cacah dan an, an – 1, … , a0 disebut koefisien-koefisien suku banyak, a0 disebut suku tetap dan an ≠ 0Metode Substitusi
Untuk menerangkan metode substitusi ini, aku akan menggunakan bentuk suku banyak yang berderajat tiga. Misalkan Misalkan suku banyak f(x) = ax3 + bx2 + cx + d. Jika kita ingin mencari nilai f(x) untuk x = k, maka nilai x pada fungsi suku banyak kita ganti k, sehingga didapat nilai suku banyak f(x) untuk x = k adalah f(k) = ak3 + bk2 + ck + d. Hal ini berlaku juga untuk suku banyak tidak sama derajat lainnya.Agar lebih memahami perihal cara substitusi ini, perhatikanlah contoh soal berikut ini.
misal 1
Tentukan nilai suku banyak berikut ini untuk nilai x yang diberikan.
f(x) = 2x3 + 4x2 – 18 untuk x = 5
Penyelesaian
f(x) = 2x3 + 4x2 – 18
f(3) = 2 (5)3 + 4 (5)2 - 18
f(3) = 2 (125) + 4 (25) - 18
f(3) = 250 + 100 - 18
f(3) = 332
Jadi, nilai suku banyak f(x) untuk x = 5 adalah 332
misal 2
Tentukan nilai suku banyak berikut ini untuk nilai x yang diberikan.
f(x) = x4 + 3x3 – x2 + 7x + 25 untuk x = –2
Penyelesaian
f(x) = x4 + 3x3 – x2 + 7x + 25
f(-2) = (-2)4 + 3(-2)3 – (-2)2 + 7(-2) + 25
f(-2) = 16 + 3(-8) – 4 - 14 + 25
f(-2) = 16 - 24 - 4 - 14 + 25
f(-2) = -1
Jadi, nilai suku banyak f(x) untuk x = -2 adalah -1
Metode Skema
Metode skema dikenal juga dengan metode Bangun, Horner, ataupun sintetik. Untuk menunjukkan bagaimana konsep metode ini, dalam hal ini akan digunakan kembali suku banyak berderajat 3. Bentuk penyelesaian dalam menentukan nilai suku banyak f(x) = ax3 + bx2 + cx + d untuk nilai x = k dengan cara skema dapat ditetapkan seperti berikut ini.Dimana, ak3 + bk2 + ck + d ialah nilai dari suku banyak yang dicari. Teknik ini, berlaku juga untuk suku banyak berderajat lainnya. Untuk lebih memahami perihal cara ini, perhatikan dan pahami contoh soal beserta pembahasanya berikut ini.
misal 3
Hitunglah nilai suku banyak untuk nilai x yang diberikan berikut ini.
f(x) = x3 + 2x2 + 3x – 4 untuk x = 5
Penyelesaian
melalui atau bersama ini cara Skema
Jadi, nilai suku banyak f(x) untuk x = 5 adalah 186
misal 4
Hitunglah nilai suku banyak untuk nilai x yang diberikan berikut ini.
f(x) = 2x3 – 3x2 + 9x + 12 untuk x = 1/2
Penyelesaian
melalui atau bersama ini cara Skema
Jadi, nilai suku banyak f(x) untuk x = 1/2 adalah 16
Demikianlah mengenai menentukan nilai suku banyak/polinomial dengan metode substitusi dan skema semoga bermanfaat.
Posting Komentar untuk "Menentukan Nilai Suku Banyak/Polinomial Dengan Metode Substitusi Dan Skema"